Copyright Notice

The presentation(s)/poster(s) in this publication comprise the Proceedings of the 2017 BiTS Workshop. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at the 2017 BiTS Workshop. This version of the presentation or poster may differ from the version that was distributed in hardcopy & softcopy form at the 2017 BiTS Workshop. The inclusion of the presentations/posters in this publication does not constitute an endorsement by BiTS Workshop or the workshop’s sponsors.

There is NO copyright protection claimed on the presentation/poster content by BiTS Workshop. However, each presentation/poster is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

The BiTS logo and ‘Burn-in & Test Strategies Workshop’ are trademarks of BiTS Workshop. All rights reserved.
BiTS Workshop 2017 Schedule

Performance Day

Monday March 6 - 4:30 pm

Reality Check

"Augmenting form factor designs with validation and debug capability"
John Kelbert - Intel Corporation

"New Possiblity with Coax Via Risers"
Matthew Priolo, Adrian Rodriquez, Christopher Kinney, Adewale Oladeinde – Intel

"Processes for Validating and Maintaining Electrical DUT Interfaces"
Martin Gao, Carolina Lock - Texas Instruments
Processes for Validating and Maintaining Electrical DUT Interfaces

Martin Gao, Carolina Lock
Texas Instruments

BiTS Workshop
March 5 - 8, 2017
Contents

• What & Why
• Proposed Processes
• Current Development
• Data
• Final Thoughts
What: Improve DUT Electrical Interface (DEI) Above ATE

- Contactor ~$1k
- On-board components ~$2k
- Pin ~$3
- DIB ~$8k
Why: No Process/Equipment = Money, Time, and Resource Costs

No Process or Equipment to Evaluate Hardware

Faulty HW During Prod

Marginal?

Y

Stays in Prod

N

Debug on ATE

Fixed?

Y

Attempt to Fix or Replace

Re-Test/Dispo Lot

Costs

Processes for Validating and Maintaining Electrical DUT Interfaces
Proposed Processes

New Product Acceptance
- Vendor pre-screen with SEICA*
- Factory qualify contactor with respective test cell at various temperatures

Production Release
- Factory verify with SEICA*
- Factory cycle contactor to spec’d # of insertions & periodically test CRES using dedicated tester (not ATE)

Preventative Maintenance
- Automatically flag HW for PM at designated # of insertions & device yield thresholds
- Gate release to production on passing evaluation

Required Infrastructure
- Automatic Data Logging and Movement to Central Locations
- Repair Shop & Vendor Standardizations

*SEICA: flying probe tester – conducts point-to-point component and PCB testing
Current Development

- ATE boards breakdown due to:
 - Active components (relays, switches, muxes)
 - Passive components (resistors, capacitors, etc)
 - Broken solder joints
 - Internal PCB trace / material breakdown

- Downed boards are tracked via S/W
Current Development

- Debug with SEICA V8 flying probe tester
 - Run VIVA programs created with board
 - Log all failures for repair into tracking S/W
- Shop technicians repair boards
 - Replace broken components using appropriate repair equipment (soldering iron, preheater, etc)
 - Reorder new spare boards for more serious issues
- All repaired boards are validated on tester before releasing back into prod
Current Development: Tester

- SEICA Pilot V8 Flying Probe Tester
 - Component Assembly Check
 - Identifies manufacturing errors and component defects
 - High level of test coverage
 - 2-sided testing with 8 probes
 - Standardized probes
 - On probe CCD cameras
 - Easy to debug GUI
 - Generate programs with CAD data
Current Development

- Contactor Insertion Tracking System (CITS)
 - Trigger PM based on insertion counts

- Contactor Test
 - Dedicated tester in Repair Shop, does not impact production capacity

Processes for Validating and Maintaining Electrical DUT Interfaces
Current Development: Tester

- **MPT™ Parametric Tester**
 - 4-wire Kelvin per-pin CRES
 (±1.5mΩ to ±200µΩ precision)
- **MTC™ Cycling Station**
 - Force and displacement
 (±1.5kg and ±1µm resolution)
- **Extras**
 - Cognex In-Sight Micro
 - Multi-Nest pusher attachment
- **Considerations**
 - Interface Items: PCBs, Nests, Simulators, Attachments, etc.
 - No per-pin force isolation
Current Development: Tester

TI Frames - “Bad” vs “Good”

Socket Per-Pin CRES w/ Cycling In-Between (Ohm)

PZ-0011 Site 1 Cleaned
Average Lifetime Tracking

• Software Tracking
 – Repair shop centralized S/W tracks amount of board breakdowns per units tested (insertions)
 • Average ATE PCB expected to breakdown between 1.6-3 million insertions – not counting new boards with design issues
 – Contactor Insertion Tracking System (CITS) tracks the lifespan of contactors (insertion count)
 • Average insertions between cleaning 5-8K
 • Average insertions between pin change 45-65K
Test Coverage Improvement

– DIB Diag vs SEICA % coverage
 • Average DIB Diag coverage 70-80% of all on-board components
 • SEICA V8 coverage 95-97% of all components

– SEICA – speed of debug increased
 • SEICA program average run time 30 minutes
 • Average manual debug time – 1 day

– Contactor speed of debug increased
 • Contactor checker average run time 30 minutes
 • Average manual pin-change – 2 hours + pin cost
Overall Improvement

- Before DEI improvement efforts
 - DEI issues 33% of all ATE downtime
- Estimated 10-15% of downtime after improvement effort
Final Thoughts

Faulty DIB / Contactor Interfaces Lead to Yield, Resource, Capacity, etc. Costs

Develop Standardized Processes for Evaluation and Maintenance

Processes for Validating and Maintaining Electrical DUT Interfaces
Final Thoughts

Processes for Validating and Maintaining Electrical DUT Interfaces

- Data
- Vendor Comparisons
- Eng Debug & Analysis
- Pre-Production Validation
- Platform for Additional Development
- Dedicated Testers
- No Impact To Production Capacity
- Fewer Lot Holds/Dispos
- Easier Debugging
- Good HW @ Prod
- Higher First Pass & Final Test Yield
- Feedback to Improve Processes & Thresholds
- Yield Correlations
- Trigger PM and Eng Analysis

Final Thoughts:

- Data
 - Vendor Comparisons
 - Eng Debug & Analysis
 - Pre-Production Validation
 - Platform for Additional Development
 - Dedicated Testers
 - No Impact To Production Capacity
 - Fewer Lot Holds/Dispos
 - Easier Debugging
 - Good HW @ Prod
 - Higher First Pass & Final Test Yield
 - Feedback to Improve Processes & Thresholds
 - Yield Correlations
 - Trigger PM and Eng Analysis

Yield Correlations

- Feedback to Improve Processes & Thresholds
- Trigger PM and Eng Analysis
- Good HW @ Prod
- Higher First Pass & Final Test Yield
- Easier Debugging
- Fewer Lot Holds/Dispos
- No Impact To Production Capacity
- Dedicated Testers
- Platform for Additional Development
- Pre-Production Validation
- Eng Debug & Analysis
- Vendor Comparisons
- Data

Final Thoughts:

- Data
 - Vendor Comparisons
 - Eng Debug & Analysis
 - Pre-Production Validation
 - Platform for Additional Development
 - Dedicated Testers
 - No Impact To Production Capacity
 - Fewer Lot Holds/Dispos
 - Easier Debugging
 - Good HW @ Prod
 - Higher First Pass & Final Test Yield
 - Feedback to Improve Processes & Thresholds
 - Yield Correlations
 - Trigger PM and Eng Analysis

Yield Correlations

- Feedback to Improve Processes & Thresholds
- Trigger PM and Eng Analysis
- Good HW @ Prod
- Higher First Pass & Final Test Yield
- Easier Debugging
- Fewer Lot Holds/Dispos
- No Impact To Production Capacity
- Dedicated Testers
- Platform for Additional Development
- Pre-Production Validation
- Eng Debug & Analysis
- Vendor Comparisons
- Data