TEST TOOLING MADE EASY

Whether you’re testing conventional packages like QFNs and BGAs, or emerging 2.5D and 3D packages, you’re only as successful as your test floor equipment. This session’s presenters span the spectrum of tooling issues beginning with a method for 3D package handling through the integration of complex technologies. Next, you’ll learn how to prevent semiconductor test system coolant leakage by implementing a hazardous warning system. Operator error in manual test handlers comes under scrutiny thanks to a failure analysis investigation in QFN packages. Lastly, we take a look at cost saving through homogenous spring pin tip implementation in a high volume manufacturing (HVM) environment.

3D Package Handling: A Simple Case of Integrating Complex Technologies
Zain Abadin—Advantest America, Inc.

Innovative Way to Prevent Semiconductor Test Tester Coolant Leakage with Hazardous Warning System
Yee Wei Tiang—Intel (Malaysia)

Die-Cracking Failure Analysis of QFN Packages in Manual Test Handler
M.P. Divakar, PhD—Stack Design Automation

Cost Saving Through Homogenous Spring Loaded Pin Tip Implementation in High Volume Manufacturing (HVM) Environment
Chin Siang (David) Chew, Nithya Nandhan Subramaniam—Intel Technology
Chin Chien Tee—Interconnect Devices, Inc.

COPYRIGHT NOTICE
The paper(s) in this publication comprise the Proceedings of the 2013 BiTS Workshop. The content reflects the opinion of the authors and their respective companies. They are reproduced here as they were presented at the 2013 BiTS Workshop. This version of the papers may differ from the version that was distributed in hardcopy & softcopy form at the 2013 BiTS Workshop. The inclusion of the papers in this publication does not constitute an endorsement by BiTS Workshop, LLC or the workshop’s sponsors.

There is NO copyright protection claimed on the presentation content by BiTS Workshop, LLC. (Occasionally a Tutorial and/or TechTalk may be copyrighted by the author). However, each presentation is the work of the authors and their respective companies: as such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

The BiTS logo and ‘Burn-in & Test Strategies Workshop’ are trademarks of BiTS Workshop, LLC. All rights reserved.
3D Package Handling
A Simple Case of Integrating Complex Technologies

Zain Abadin
Advantest America, Inc.

Contents

• Scope and Basic Assumptions
• 3D Package Trends
• 3D Package Handling Technologies
• 2/2.5/3D Package Handler
• Conclusions
Scope and Basic Assumptions

Scope
Final Test
3D packages include 2D, 2.5D, 3D Singulated, SiP/PoP

Basic Assumptions
New handling solutions
- Improve or maintain current yield
- Deliver competitive CoT
- Suitable for HVM environment

Yield Applied

Unit Cost = Depreciation + Operating Cost / Throughput

3D Package Trends
Market Forces

- Higher Performance
- More Features
- Smaller, Thinner
- Lower Cost

Why 3-D?
"More than MOORE"

Driving Forces for 3D Integration

Sources: Micron Technology, EE Times, ITRS 2009 Assembly, Google Images
3D Package Trends

Market Forces

- Higher Performance
- More Features
- Smaller, Thinner
- Lower Cost

Why 3-D?

<table>
<thead>
<tr>
<th></th>
<th>2D</th>
<th>3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size Reduction</td>
<td>35%</td>
<td>45%</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>40%</td>
<td>45%</td>
</tr>
<tr>
<td>Packaging Cost</td>
<td>40%</td>
<td>45%</td>
</tr>
</tbody>
</table>

Sources: Micron Technology, EE Times, ITRS 2009 Assembly, Google Images

3/2013 3D Package Handling - A Simple Case of Integrating Complex Technologies 5

3D Package Trends

Industry Examples

Source: Xilinx 3-D_Architecures

Source: Amkor Technologies, Inc

Xilinx Virtex-7

Package Substrate

Microbumps
Silicon Interposer
Through-Silicon Vias
C4 Bumps
BGA Balls

3/2013 3D Package Handling - A Simple Case of Integrating Complex Technologies 6
3D Package Trends

Packaging Trends and Handler Functions

Handler’s Main Functions: Transfer, Align, Thermal Control

- **Loading** + Pre-Soak
- **Transfer**
- **Align** + Thermal Control
- **Transfer** + Post-Soak
- **Unloading**

Test Site

Packaging Trends
- Finer Ball Pitch
- Heterogeneous Stacked Devices
- High Power Dissipation
- Thinner Packages
- High Pin Count

Source: Daniel Nenni, Semiconductor Packaging (3D IC) Emerging As Innovation Enabler!

3/2013 3D Package Handling - A Simple Case of Integrating Complex Technologies

3D Package Trends

Test Nodes

No industry consensus on test nodes yet

Niels Bohr
“Prediction is very difficult, especially about the future.”

3/2013 3D Package Handling - A Simple Case of Integrating Complex Technologies
3D Package Handling Technologies
Packaging Trends and Handler Requirements

Packaging Trends
- Finer Ball Pitch
- Power Dissipation
- Heterogeneous Stacked Devices
- Thinner Packages
- High Pin Count

Handler Requirements
- Vision Alignment

3/2013 3D Package Handling - A Simple Case of Integrating Complex Technologies

3D Package Handling: Alignment
Tolerance Stack Up @ Contact

Major Contributors to Tolerance Stack up @ the Contact
- Socket
- Package
- System Positioning
3D Package Handling: Alignment

Mechanical Alignment Method

- Pin Diameter
- Pin to Guide
- Pin Position

1. **Guide Outline**
2. **Device**
3. **Error in Alignment**

Vision Alignment Method

- Measure socket position and angle
- Calculate and Compensate: x, y, theta
- Measure device position and angle

Result: High fidelity alignment
3D Package Handling: Alignment
Trend towards Vision Alignment

Alignment Simulation

Miscontact Ratio (%) Ball Pitch vs Alignment Method

>33%

Ball Pitch (mm)

Benefits:
- Improved yield
- Lower CoT

3D Package Handling: Thermal
Current Handler Segmentation and Trends

Memory Handler
Chamber, LN2 for low temp

SoC Handler
For Low Power Dissipation: ATC, PTC
For High Power Dissipation: ATC, PTC

Trends:
- Segmentation disappearing
- Higher Power
- Higher Power Density
- Thinning Packages
3D Package Handling: Thermal
ATC Method and Performance

Watch for:
- Thermal Mass
- Temp. Transition
- Tj max/min,
- Time to Guard Band
- Induced Gradient
- SP vs. Power/Power Density
- ATC+PTC in same system

3D Package Handling: Thermal
ATC Performance Examples

Resistance (C/W) at
45 W, 100 W, 130 W, 200 W
3D Package Handling: Thermal

Thermal Trend and ATC Need

Power and Power Density

- **Thermal concerns**
 - E.g. Optical 85°C junctions

Source: Xilinx 3-D_Archiectures

Power Density > 50 W/cm²

<table>
<thead>
<tr>
<th>Year</th>
<th>Logic + Memory</th>
<th>Power > 10x</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>~ 5x</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>1x</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td>~ 5x</td>
</tr>
</tbody>
</table>

Benefits:
- Improved yield,
- Lower TT
- Lower CoT, Higher ASP

3D Package Handling: Thin

Impact Force and Force Centroid

Impact Force During Transfer

< 0.3 N

Force Centroid

Source: Bernd Appelt: The Thin Package Challenge Never Ends, Semicon West 2012

Smart Phones < 8 mm

Tablets < 10 mm

Notebooks < 20 mm

Wearable Electronics
Rapid Increase in Pin Count
Trend towards Higher Parallelism
Translate into Higher Insertion Force, >4000 kg

Collaboration: Lowering F/Pin will be great help
Summary

- 2.5D in production
- Packages becoming more complex, existing advanced technologies capable of handling each handling requirement - separately
- 3D package handling need an integration of ATC/PTC + VA and STH technologies
- Upgradeable solution needed to accommodate future migration to finer pitch, higher parallelism and higher pin count

One correction:

3D Package Handling:
A Complex Case of Integrating Simple Technologies