Session 6
Interfacing: Contacting The Device And Beyond

“Comparison Of Test Interface Unit For High Frequency Applications”
Doyce Ramey, Jimmy Vo — Texas Instruments, Inc.
Takuto Yoshida — Yokowo Co., Ltd.

“Improving Test Efficiency By New Device Interface Topology For High Parallel Testing”
Joachim Moerbt, Rose Hu — Advantest (Europe) GmbH

“Socketing The Impossible: A Very Fine, Very Dense Case Study”
Jon Diller, Kiley Beard — Synergetix
Takuya Tsumoto — NEC Electronics Japan

COPYRIGHT NOTICE
• The papers in this publication comprise the proceedings of the 2006 BiTS Workshop. They reflect the authors’ opinions and are reproduced as presented, without change. Their inclusion in this publication does not constitute an endorsement by the BiTS Workshop, the sponsors, BiTS Workshop LLC, or the authors.
• There is NO copyright protection claimed by this publication or the authors. However, each presentation is the work of the authors and their respective companies: as such, it is strongly suggested that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.
• The BiTS logo and ‘Burn-in & Test Socket Workshop’ are trademarks of BiTS Workshop LLC.
Comparison of Test Interface Unit for High Frequency Applications
(Comparison of Coaxial Socket with Brass Body and Plastic Socket)

2006 Burn-in and Test Socket Workshop
March 12 - 15, 2006

Takuto Yoshida – Marketing Dept. GM
Yokowo Co., Ltd.
Doyce Ramey – RF Wireless Lab Manager
Texas Instruments, Inc.
Jimmy Vo – RF Wireless Test Engineer
Texas Instruments, Inc.

Agenda

- Introduction
- Solution
- Test Socket Experiment
- Test Interface Experiment
- Conclusions
Due to increase of wireless applications, 1GHz to 10GHz high frequency application devices are increasing.
Challenges with RF Testing

When testing frequency condition is higher to 0.8GHz → 2.4GHz → 5.2GHz ...

- Sockets Introduce Poor RF Performance
 → Difficult impedance control
 → Margins to Specifications
 → Low product yield
- Small compression travel for contact
 → Difficult to handle in production

Requirements for Test Sockets

<table>
<thead>
<tr>
<th>Problems</th>
<th>Key Parameters</th>
<th>Desired Spec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1: Difficulty to match the</td>
<td>Return loss</td>
<td>< -10dB</td>
</tr>
<tr>
<td>circuit impedance.</td>
<td>Inductance</td>
<td>< 1nH</td>
</tr>
<tr>
<td>#2: Difficulty to set up test</td>
<td>Insertion loss</td>
<td>> -1dB</td>
</tr>
<tr>
<td>parameters.</td>
<td>Return loss</td>
<td>< -10dB</td>
</tr>
<tr>
<td>#3: Difficulty of multiple</td>
<td>Crosstalk</td>
<td>< -25dB</td>
</tr>
<tr>
<td>test at the same time.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4: Difficulty of steady contact.</td>
<td>Compression</td>
<td>> 0.25mm</td>
</tr>
<tr>
<td></td>
<td>travel</td>
<td></td>
</tr>
</tbody>
</table>
Solution for High Frequency Devices

Metal body coaxial socket solution
• Three different type pins for RF/Power/Ground
• Coaxial structure for RF (high frequency) signal
• Power pin can be used to low frequency signal
• Common metal ground body for lower Inductance
• Long compression travel for steady contact

Socket Photo

Coaxial Socket
Pitch: 0.5mm
RF Coaxial Pin: 36pcs.
Power Pin: 36pcs.
Ground Pin: 72pcs.
Compression travel: 0.25mm
Expected Performances of Socket

- Insertion loss > -1dB
- Return loss < -10dB
- Crosstalk < -25dB
- Compression travel length > 0.25mm

Test Socket Experiment

- RF evaluation of 0.5mm pitch BGA socket (Coaxial socket and plastic socket)
- Insertion loss
- Return loss
- Crosstalk
RF Evaluation System

VNA
(Agilent Technology)
Probe Station
(Cascade Microtech)

GSG Probe
(Cascade Microtech)
0.5mm Pitch

Socket Diagram

Coaxial Socket
5.05mm Pin

Plastic Socket
1.8mm Pin

Plastic Socket
5.05mm Pin
Measurement Diagram

Insertion Loss
Return Loss

Crosstalk

Top View

GSG Probe

PCB

De-embedded

Open

3/14/2006
Comparison of Test Interface Unit for High Frequency Applications

Socket Insertion Loss Comparison

- Coaxial Socket (5.05mm Pin)
- Plastic Socket (1.8mm Pin)
- Plastic Socket (5.05mm Pin)

NG Zone

0.0
-0.5
-1.0
-1.5
-2.0
-2.5
-3.0
-3.5
0 2 4 6 8 10 12 14 16 18 20

Insertion Loss [dB]

Frequency [GHz]

BGA Socket 0.5mm Pitch

3/14/2006
Comparison of Test Interface Unit for High Frequency Applications
Socket Return Loss Comparison

<table>
<thead>
<tr>
<th>Frequency [GHz]</th>
<th>Plastic Socket (1.8mm Pin)</th>
<th>Plastic Socket (5.05mm Pin)</th>
<th>Coaxial Socket (5.05mm Pin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-70</td>
<td>-50</td>
<td>-30</td>
</tr>
<tr>
<td>2</td>
<td>-60</td>
<td>-40</td>
<td>-20</td>
</tr>
<tr>
<td>4</td>
<td>-50</td>
<td>-30</td>
<td>-10</td>
</tr>
<tr>
<td>6</td>
<td>-40</td>
<td>-20</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>-30</td>
<td>-10</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>-20</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>-10</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>18</td>
<td>20</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>50</td>
<td>70</td>
</tr>
</tbody>
</table>

NG Zone

BGA Socket 0.5mm Pitch

Socket Crosstalk Comparison

<table>
<thead>
<tr>
<th>Frequency [GHz]</th>
<th>Plastic Socket (1.8mm Pin)</th>
<th>Plastic Socket (5.05mm Pin)</th>
<th>Coaxial Socket (5.05mm Pin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-70</td>
<td>-50</td>
<td>-30</td>
</tr>
<tr>
<td>2</td>
<td>-60</td>
<td>-40</td>
<td>-20</td>
</tr>
<tr>
<td>4</td>
<td>-50</td>
<td>-30</td>
<td>-10</td>
</tr>
<tr>
<td>6</td>
<td>-40</td>
<td>-20</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>-30</td>
<td>-10</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>-20</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>-10</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>18</td>
<td>20</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>50</td>
<td>70</td>
</tr>
</tbody>
</table>

NG Zone

BGA Socket 0.5mm Pitch
Socket and Board Experiment

- DUT board design and validation for GPS/WSP receiver device.
- PCB Design Simplified
- DUT board tuning effort minimized
- Improvement of Repeatability of RF Parametric Data

Signal Path Include the Interconnect to the Tester

RF Test Signal Path

3/14/2006 Comparison of Test Interface Unit for High Frequency Applications
Data Comparison

• Design of DUT PCB solution can be brought to the test much faster because of the critical parameters that must be considered when designing PCBs using conventional plastic bodied sockets are better defined and repeatable.
(i.e. return loss, insertion loss and crosstalk)

Data Comparison

• Repeatability of critical RF Parameters such as noise figure, BER, intermod tests, phase noise, EVM tests can be improved with the Hi Giga socket. Improvements of 3d from 0.34dB to less than 0.15dB when measuring noise figure.
Conclusions

- The 50 Ω coaxial RF pins and grounded pins to the metal case improves parametric performance when used on production test boards.
- Metal body of socket minimizes ground inductance.
- Coaxial pins provides a good 50 Ω path to the DUT for critical pins.

Contact Information

- Takuto Yoshida - Yokowo Co, Ltd (Questions about Sockets)
 email: t-yoshida@yokowo.co.jp
- Doyce Ramey – (Applications and Data)
 Texas Instruments, Inc.
 email: dramey@ti.com
- Jimmy Vo –
 Texas Instruments, Inc. (Applications and Data)
 email: tvo1@ti.com
Improving test efficiency by new device interface topology for high parallel testing

2006 Burn-in and Test Socket Workshop
March 12 - 15, 2006

Joachim Moerbt
Advantest (Europe) GmbH

Outline

• Target
• Proposals for high parallel testing
• Transmission Nets Topology
 • Resource Sharing Interface
 • Signal Integrity
• Device Interface Development
• Test and handling concept
• Limitations for Efficiency
• Benefits of the concept
• Conclusion
Target

- Prime target for IC manufacturers: Reducing test cost while ensuring product quality
- High parallel testing is the most important way to reduce cost of test
- Keep efficiency limitations at a minimum
 - Availability of system resources
 - High cost of channel, power and interface
 - “Non-productive” times

Proposals for high parallel testing I

High parallel testing with new system
- New generation of test systems
- Enormous test resources
- Best signal performance
- Additional resources in the test system
- Relatively high initial investment

960 DR
576 IO
64 PPS

3584 DR
3072 IO
640 PPS
Proposals for high parallel testing II

High parallel testing using existing test system by sharing the tester resources through dedicated signal transmission net topology within the device interface

- Cost effective by using available tester resources
- Flexible device interface required to make the resources usable at the DUT
- Close collaboration with chip designer and test program developer required

Resource Sharing Interface I

Test System	Device Interface	Device (DUT)
Signal Generator | Signal Transmission | Signal Receiver

Existing technology: Double the parallelism

50Ohm

100Ohm

Driver

50Ohm

100Ohm

Adr

Adr

50Ohm

Existing technology: Double the parallelism
Resource Sharing Interface II

Test System	Device Interface	Device (DUT)
Signal Generator | Signal Transmission | Signal Receiver

Resource shared by 4

Signal Integrity Analysis I

Simulation of different interface structure at 250MHz

Paper #2
Signal Integrity Analysis II

Theoretically
• With full impedance matched signal transmission line, signal performance should be independent from topology

However, simulation analysis indicates that the signal RF performance is also constrained by
• Material of transmission line (\(\varepsilon_r\), \(\tan\delta\), etc.)
• Inductive and capacitive load of sockets
• Interconnections and parasitic parameters
• Load of devices

Device Interface Development

Considering requirements of testing:
• The maximum multiple structure that can be achieved until 250MHz is one to four.

Practically:
• Limitation of 200Ohm transmission line on a PCB by:
 • Cost-efficient available materials
 • Thickness of the PCB
• A new device interface is required, considering
 • Signal performance
 • Manufacturability of PCB and device interface
 • Cost factor of PCB and device interface
 • Flexibility for reusability
Modular design concept

Device Interface topology with impedance mismatch

Simulation I

Simulation of interface concept at 250MHz with mismatched impedance
Simulation II

Result:

Simulation waveform at 250MHz considering the test conditions
- Comparing with full impedance matched design, the device interface can achieve sufficient signal performance
- More than +/-250mV amplitude threshold at the device even with mismatched impedance

Implementation I

PCB - Layer stack-up
- Buried vias on individual cores avoid multiple pressing
- Dedicated impedance controlled strip line topology is applied to keep the board thickness
- Cross talks avoided by rectangle arrangement of strip lines in adjacent signal layers
- Excess inductance caused by increasing board thickness is eliminated
- Board is producible at acceptable cost
Implementation II

Flexible Device Interface
consisting of:
Universal Base Unit
Exchangeable Socket Board Unit

Measurement at 250MHz

Signal swing from Generator: 0.4V - 1.4V
Waveform measured with device under testing
Benefits and Constraints I

• Constraints of resource sharing:
 • It is not feasible to distribute one resource to unlimited quantity of devices only with passive nets.

• Test frequency is limited in shared resource testing, because of
 • the impedance mismatching
 • device load
 • loss along the transmission lines

Benefits and Constraints II

Advantages of the implementation:
• Maximum frequency of 250MHz with 256 DUT
• Most flexible interface topology
 • Flexible signal distribution
 • Flexible resource arrangement
• Cost reduction by independent manufacturing of Base Unit and Socket Board Unit
• User friendly maintenance - reduced downtime, increased productivity
• Less warehouse space
Test and Handling Concept

To judge the test efficiency, the total test cell must be considered

- 1 x Tester (Driver/IO/PPS)
- 2 x Testhead (station)
- 2 x HiFix (256 DUT)
- 2 x Handler and Change Kit (256 DUT)

Used system:
- Tester @ 250 MHz, HiFix 4-shared driver, 4 I/O per DUT;
- Handler: 256 DUT per station
- 2 step testmode: Device core test separated from speed test

Limitations for Efficiency I

Existing throughput losses at device test

- Lot size effects (~12%)
 - Loading/Unloading the lot
 - Handler/Temperature setup and shut down time
- Scheduled/unscheduled downtime (~6%/~6%)
 - Preventive maintenance/cleaning/daily checks
 - Equipment down (jam/repair/waiting on parts)
- 2 station synchronisation (~6%)
 - Test cell as fast as slowest handler
 - Lot ends are not synchronized
- Flexibility/Granularity/Product Mix (~3%)
Limitations for Efficiency II

Throughput compared between 128 vs. 256 DUT per test station

Low “Non-productive time” is essential for test efficiency by increased parallelism

Limitations for Efficiency III

4-shared concept limitations caused by test cell:
- Limited power supplies at existing tester
- Limited tester resources (driver and I/O channels)
- Frequency limited at 250MHz for core test
- Highest reliability required for tester, handling system and sockets
- Increased weight and size of device interface requires additional tooling
Benefits of the concept

Efficient usage of existing tester resources by:

- Increasing parallelism by 4-shared Flexible Device Interface at maximum tester speed
- Availability of high reliable high parallel handling system for highest utilisation of existing test stations
- Doubled the test capacity at nearly same production floor
- Reducing test cost per device
- Increasing total throughput by ~ 1.6
- Highest efficiency for high volume products

Conclusion

Comment of our customer

“2x256 DUT is very promising … as long as it is running”

Special thanks to Mrs. Rose Hu, co-author and project leader of 4-shared HiFix development
Socketing the Impossible
A Very Fine, Very Dense Case Study

2006 Burn-in and Test Socket Workshop
March 12 - 15, 2006

Jon Diller, Kiley Beard; Takuya Tsumoto
Synergetix; NEC Corporation

Project Overview

• “BGAs are easy”
 – Jon Diller, 2005
• Challenge: Socket a very dense device
 – Device description
 – Test platform considerations
 – Contact selection
 – Socket design
 – Actual results
Device Description

- ‘nano’ BGA / WLCSP memory device
- >1000 0.12Ø balls on 0.28 mm pitch

Outline ±0.02; ball true position?; ball diameter 0.12 ±?
Platform Considerations

• Production test to be optically aligned with proprietary test handler
• Production sockets therefore pure interposer
• Add-on alignment ineffective
• Separate manual test socket for development

Contact Selection

101321-001: Conventional DE probe
8gf, 150-200 mΩ, 500K
Socket Construction
Fixed Device Alignment Pocket

- Simplest
- Mechanically strong
- Exposed probes
- Relies on edge alignment
- Clearance produces shift
Socket Construction

Windowpane Floating Nest

- Alignment from leads
- Normally preferred for BGAs
- Probe too short
- Edge < TP + Ø

Contact Respecification

101405-001
Socket Construction
One-Ball-One-Hole

- Controls flagpoling
- Miss limited to probe diameter minus hole diameter
- Prevents overcompression
Accuracy Results

Actual Dimensions

- Measured ball TP no worse than 0.005
- Ball diameter 0.1126 to 0.1150
- Nest substrate alignment +0.015 / +0.020 vs. nominal
- Average nest hole TP no worse than 0.007
- Nest hole Ø -0.001 typical vs. nominal

Accuracy Results

Test Process

- Cycle 10 sample devices 1x with HSL
- Review and record witness mark character and location
- Compare witness marks statistically
Accuracy Results

Witness Marks

Before cycling

March 14, 2006 Diller/Beard/Tsumoto: Socketing the Impossible

Accuracy Results

Witness Marks

Four points

March 14, 2006 Diller/Beard/Tsumoto: Socketing the Impossible
Accuracy Results

Witness Marks

‘Three’ Points

March 14, 2006 Diller/Beard/Tsumoto: Socketing the Impossible

Accuracy Results

Witness Marks

‘Two’ Points

March 14, 2006 Diller/Beard/Tsumoto: Socketing the Impossible
March 14, 2006 Diller/Beard/Tsumoto: Socketing the Impossible

Accuracy Results

Witness Marks

‘One’ Witness Mark

Accuracy Results

Witness Marks, %

March 14, 2006 Diller/Beard/Tsumoto: Socketing the Impossible

Paper #3
Conclusions

• Socket construction viable for contact
• Potential for significant wear, contamination
• Witness marks likely to be acceptable
• Shorter probes in interposer may mitigate plunger lean
• Socket now in evaluation at NEC