Session 1
Advanced Socket Materials

“Carbon Nanotube Polymer Composites For Socket Applications”
Mark Hyman, Tim Jozokos, Heidi Sardinha, Yuanheng Zhang
Hyperion Catalysis International, Inc.

“PEEK-based Solutions For Test Socket Applications”
John Walling, Sam Brahmbhatt — Victrex USA, Inc.

“Para-phenylene Rigid Rod Polymers And Their Unique Attributes For Burn-in And Test Sockets”
Lorenzo P. DiSano — Ensinger Industries, Inc.

COPYRIGHT NOTICE
• The papers in this publication comprise the proceedings of the 2006 BiTS Workshop. They reflect the authors’ opinions and are reproduced as presented, without change. Their inclusion in this publication does not constitute an endorsement by the BiTS Workshop, the sponsors, BiTS Workshop LLC, or the authors.
• There is NO copyright protection claimed by this publication or the authors. However, each presentation is the work of the authors and their respective companies: as such, it is strongly suggested that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.
• The BiTS logo and ‘Burn-in & Test Socket Workshop’ are trademarks of BiTS Workshop LLC.
Carbon Nanotube Polymer Composites for Socket Applications

2006 Burn-in & Test Socket Workshop
March 12 - 15, 2006

Mark Hyman, Tim Jozokos,
Yuanheng Zhang, Heidi Sardinha
Hyperion Catalysis International, Inc.

Introduction

• Electrostatic Discharge (ESD) Concern
• Carbon Nanotube Polymer Composites
• Requirements for Socket Applications
• Composite SEM Comparison
• Discussion
• Follow-up Work
Electrostatic Discharge Concern

- Increasing susceptibility of semiconductor devices
 - Smaller silicon features
 - Less on-chip ESD protection
- Machine Model (MM)
- Charged Device Model (CDM)

Charged Device Model Sensitivity

Source: Electrostatic Discharge Association, "Electrostatic Discharge Technology Roadmap", 2005
March 13, 2006 Carbon Nanotube Polymer Composites for Socket Applications 5

ESD in Sockets

• ESD is managed throughout the device manufacturing process
• ESD management will have to extend to the burn-in and test arena
• Socket materials have traditionally been insulators
• Are socket performance and ESD management in conflict?

March 13, 2006 Carbon Nanotube Polymer Composites for Socket Applications 6
Conductive Fillers
Filler Loading vs. Aspect Ratio

<table>
<thead>
<tr>
<th>Loading</th>
<th>Theoretical Percolation Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>Spheres (L/D=1)</td>
</tr>
<tr>
<td>5%</td>
<td>Carbon Black (L/D=10)</td>
</tr>
<tr>
<td>10%</td>
<td>Carbon Fiber (L/D ~100)</td>
</tr>
<tr>
<td>15%</td>
<td>FIBRIL nanotubes (L/D ~1000)</td>
</tr>
</tbody>
</table>

Structure of a FIBRIL Nanotube

- Graphitic wall structure
- Multilayer
- Hollow
Carbon Nanotubes

- Diameter: 10 nanometers
- Length: 10,000 nanometers
- Aspect Ratio: L/D = 1000

Unique Product Performance

- Conductivity “plus”
- Minimal effect on polymer properties
- Excellent surface smoothness
- Consistent electrical properties
- Chemical cleanliness
- Minimal viscosity increase

Small size

Low Loading
Commercially Successful

Hard Disk Drive Semiconductor

Requirements for Sockets (some of them)

• Static dissipative
• Maintain sufficient electrical isolation between conductors
• Minimize crosstalk / leakage
• Processability
 – Injection molding
 – Machining

While device pitch gets smaller
Samples

Commercially Available Stock Shapes

<table>
<thead>
<tr>
<th>Material</th>
<th>V_r (ohm-cm)</th>
<th>S_r (ohm/sq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEI - Carbon Fiber</td>
<td>10^1</td>
<td>10^1</td>
</tr>
<tr>
<td>PEI - Carbon Nanotubes</td>
<td>10^2</td>
<td>10^2</td>
</tr>
<tr>
<td>PEEK - Carbon Fiber</td>
<td>10^7</td>
<td>10^7</td>
</tr>
<tr>
<td>PEEK - Carbon Nanotubes</td>
<td>10^1</td>
<td>10^3</td>
</tr>
<tr>
<td>PEEK - CNT and CF for comparison</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEM of fractured surfaces

March 13, 2006 Carbon Nanotube Polymer Composites for Socket Applications 13

PEI with Carbon Fiber

March 13, 2006 Carbon Nanotube Polymer Composites for Socket Applications 14
PEI with Carbon Nanotubes

March 13, 2006 Carbon Nanotube Polymer Composites for Socket Applications 15

PEEK with Carbon Fiber

March 13, 2006 Carbon Nanotube Polymer Composites for Socket Applications 16
March 13, 2006 Carbon Nanotube Polymer Composites for Socket Applications

PEEK with Carbon Nanotubes

- x 200
- x 500
- x 1,000
- x 5,000
- x 10,000
- x 20,000

March 13, 2006 Carbon Nanotube Polymer Composites for Socket Applications

PEEK with CNT and CF (for comparison)

- x 200
- x 500
- x 1,000
- x 5,000
- x 10,000
Processing – Ease of Molding

CNT-PEEK compound processes very much like unfilled PEEK at injection molding shear rates.

Discussion

- Resistivity is traditionally measured with macro-scale probes
- What happens when socket features approach the dimension of the carbon fiber filler?
 - Thinner walls separating socket holes
 - Carbon fiber directly conducting through wall thickness more likely
 - Signal cross-talk / leakage more likely
Discussion

- Injection molding aggravates electrical problems caused by carbon fiber
- ESD management is no longer optional
- Socket performance cannot be sacrificed

Carbon nanotubes provide an appropriately scaled microstructure for static dissipative sockets

Follow Up Work

- Characterize electrical properties in fine pitch features
- Investigate injection molding effects on electrical uniformity
- Evaluate performance of finished sockets
PEEK-based Solutions for Test Socket Applications

Sam Brahmbhatt
John Walling
Victrex USA Inc.

BiTS Conference
March 2006

Today’s Discussion…

- What is VICTREX® PEEK™?
- PEEK in the Semiconductor Industry
 - Examples of Front-end applications
 - Examples of Back-end applications
- Why is VICTREX PEEK specified?
 - PEEK performance
- BiTS application requirements
 - PEEK grades for BiTS applications
 - Case studies
 - Added value services
What is PEEK?

- Semi-crystalline polymer capable of withstanding extreme environments

- Readily modified with various filler technologies to enhance performance. i.e., carbon fiber, glass, ceramics, etc...

- Widely considered to be the highest performance, melt processable polymer

PEEK offers proven performance in the semiconductor industry
PEEK applications (front-end)

- Etch Components
- CMP Retaining Rings
- Wafer and Disk Carriers
- Silicon Wafer Pods

PEEK applications (back-end)

- High Temperature Matrix Trays
- Flexible Circuit Substrates
- Test Sockets
- Test Socket Alignment Plates
Why is PEEK specified?

PEEK performance

- Machines to very tight tolerances
 - Deburring easier with filled grades
- Low moisture absorption
 - PEEK 0.5% (at saturation)
 - PAI 4.4%
 - PI 2.0%
- Heat resistance exceeding 260°C
 - Withstands lead-free solder reflow process
PEEK performance

- Chemical resistance pH 2-14
 - Insoluble in most common semiconductor chemicals
- Excellent mechanical properties
 - Stronger and stiffer thin-wall cross-sections
- Outstanding wear resistance
 - Longer life in aggressive environment

Flexural Modulus vs. Temperature
Tensile Strength vs. Temperature

Dimensional Stability

Coefficient of Thermal Expansion of Victrex® PEEK™ Grades

<table>
<thead>
<tr>
<th>Temperature [°C]</th>
<th>Height [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50</td>
<td>99.5</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>50</td>
<td>100.5</td>
</tr>
<tr>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>150</td>
<td>101.5</td>
</tr>
<tr>
<td>200</td>
<td>102</td>
</tr>
</tbody>
</table>

Victrex PEEK Standard
Victrex PEEK 30% GF
Victrex PEEK 30% CF
Victrex PEEK Bearing Grade
BiTS application requirements

- Thermal performance
 - -55 to 155°C
- Dimensional stability
 - Low CTE, low moisture absorption
- Compression and shear strength
 - Strong and stable
 - Thin walls between holes
BiTS application requirements

- High wear resistance
 - Up to 100,000 pin insertions
- Processability
 - Thin-wall molding
 - Ease of machining
 - Low residual stresses
- Electrostatic dissipative
 - Does not generate static charge
 - Dissipate incoming static charge safely

Electrostatic Dissipative (ESD)

- **Conductive Materials**
 - Will not generate a static charge
 - Grounds charges quickly (may damage component)
 - Will shield sensitive components from electric fields
- **Dissipative**
 - Will not generate a static charge
 - Will not allow a charge to remain localized on surface
 - Can safely & quickly bleed electric charge to ground
- **Antistatic**
 - Low potential to generate a static charge
 - Will not allow a charge to remain localized on surface
 - Will slowly bleed an electric charge to ground
- **Insulative**
 - May generate static charge on surface
 - Will allow a charge to remain localized on surface
Product Solutions for BiTS applications

<table>
<thead>
<tr>
<th>Socket Type</th>
<th>Machined (stock shapes)</th>
<th>Molded (thick wall >2mm)</th>
<th>Molded (thin wall <2mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><E7 Ω/sq</td>
<td>Conductive filler</td>
<td>Conductive filler</td>
<td>Conductive filler</td>
</tr>
<tr>
<td>Dissipative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E7-E9 Ω/sq</td>
<td>Conductive filler</td>
<td>Conductive filler</td>
<td>Conductive filler</td>
</tr>
<tr>
<td>Antistatic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E9-E11 Ω/sq</td>
<td>Conductive filler</td>
<td>Conductive filler</td>
<td>Conductive filler</td>
</tr>
<tr>
<td>Insulative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>E11 Ω/sq</td>
<td>Unfilled/Glass Mineral/Ceramic</td>
<td>Unfilled/Glass Mineral/Ceramic</td>
<td>Unfilled/Glass Mineral/Ceramic</td>
</tr>
</tbody>
</table>

Case Study #1

Molded test socket cover (top slide plate)
Part description and requirements

- Flat plate with holes
- \(\sim 50 \text{ mm} \times 50 \text{ mm} \)
- 0.8 – 1.0 mm thick
- Part was molded with PES
- ESD: SR E9-E11 ohms
- Improved fatigue and impact toughness

PEEK solution with unique material and filler technology to optimize rheological and ESD properties

Case Study # 2

Machined test socket base plate
Part description and requirements

- Stock shape 3/8 in. thick with .010 in. & .030 in. holes
- Ease of machining
- Burr-free holes
- Dimensional stability
- Insertion wear resistance

PEEK solution with unique filler technology to optimize machining and dimensional stability

PEEK added value – Victrex

- Proven product performance – brand reliability
- Dedicated technical service support for on-site assistance
- Application development and prototype expertise
- In-depth product performance and processing data
- Machining expertise
- Global customer service network

Working hand-in-hand with channel partners and end users to reach new levels of performance and cost savings
Para-phenylene Rigid Rod Polymers and Their Unique Attributes for Burn-in and Test Sockets

2006 Burn-in and Test Socket Workshop
March 12 - 15 2006

Lorenzo P. DiSano
Ensinger Ind. – Washington, PA USA

What are Para-phenylene Rigid Rod Polymers?

- Wholly aromatic.
- Benzene rings directly bonded to each other.
- Self Reinforcing at the molecular level.
- Isotropic
- Amorphous
- Extraordinarily hard, strong and stiff.
- Previously intractable
- Commercially available
History of SRPs

- Marvel and Vogel recognized the feasibility and potential of rigid rod polymers. (1950s)
- Under Air Force Research Laboratory sponsorship a number of chemical producers such as Dow Chemical and Hoechst Celanese validated SRPs. (1960s)
- Maxdem develops process-able SRPs. (1980s)
- Maxdem launches Mississippi Polymer Technology - MPT. (2000)
- MPT introduces Parmax® SRP, a new family of thermoplastic SRPs. (2003)
- Solvay purchases MPT and the Parmax® SRP product line. (2006)
Most polymers are flexible

SRPs Have Rigid Chains
Strongest and Stiffest Thermoplastic

![Graph comparing modulus and tensile strength of different polymers](image)

Metal Like Plastic

![Graph comparing tensile strength of different metals](image)

Paper #3

March 12 - 15, 2006
Flex Stress-Strain

Sample: W 8mm × T 2 mm × L 50 mm @ 23 ºC
Rate: 1.00 mm/min Span: 35 mm

Tensile Stress-Strain
Compressive Stress-Strain

SRP THREAD STRENGTH

Metal Bolt Head Failure
NO SRP FAILURES

PEEK Tapped Thread Pull Out Failure

<table>
<thead>
<tr>
<th>Sample Run</th>
<th>SRP</th>
<th>PEEK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>250</td>
<td>125</td>
</tr>
<tr>
<td>2</td>
<td>250</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>250</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>250</td>
<td>128</td>
</tr>
<tr>
<td>5</td>
<td>250</td>
<td>110</td>
</tr>
<tr>
<td>6</td>
<td>250</td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>250</td>
<td>105</td>
</tr>
<tr>
<td>8</td>
<td>250</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>250</td>
<td>120</td>
</tr>
<tr>
<td>10</td>
<td>250</td>
<td>115</td>
</tr>
</tbody>
</table>
SRP HARDNESS

<table>
<thead>
<tr>
<th>Material</th>
<th>Hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polycarbonate</td>
<td>B</td>
</tr>
<tr>
<td>Polycyclic Olefins</td>
<td>2H</td>
</tr>
<tr>
<td>PMMA</td>
<td>3H</td>
</tr>
<tr>
<td>SRP -1000</td>
<td>≥9H</td>
</tr>
</tbody>
</table>

SRP Abrasion Wear Resistance

![Graph showing SRP Abrasion Wear Resistance with various materials and hours]

<table>
<thead>
<tr>
<th>Material</th>
<th>PPS</th>
<th>PEEK</th>
<th>PI</th>
<th>SRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wear (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SRP TGA in Air

SRP Dimensional Stability

Paper #3
SRP Electrical Properties

- Dielectric Constant (ASTM 150) 3.1 (1MHz)
- Dielectric Strength (ASTM 149) 6.44 kV/mm
- Specific Volume Resistance (DIN IEC93) $6 \times 10^{15} \Omega \text{ cm}$
- Surface Resistance (DIN IEC 93) $2 \times 10^{16} \Omega$
- Resistance to Tracking (IEC 112) CTI 150

SRP Machinability

- There is little evidence of internal cracking, crazing or deformation due to thermal expansion, material stress or out-gasing.
- Due to a nano rigid rod microstructure SRP mills, drills and turns like the best thermoplastics even though it has a low notched Izod impact value of 0.8 ft-lbs/in (un-notched Izod impact = 18.7 ft-lbs/in)
- Metal like hardness and isotropic behavior translates into minimal burring and little or no deformation under machining loads.
Key Attributes of SRPs for Burn-in & Test Sockets

- Excellent Machinability – Like Aluminum
- Homogenous, Amorphous & Isotropic
- High Modulus
- High Creep Resistance
- Low/Uniform CLTE
- Low Moisture Pick-Up
- Exceptional Abrasion Resistance