COPYRIGHT NOTICE

• The papers in this publication comprise the proceedings of the 2003 BiTS Workshop. They reflect the authors’ opinions and are reproduced as presented, without change. Their inclusion in this publication does not constitute an endorsement by the BiTS Workshop, the sponsors, or the Institute of Electrical and Electronic Engineers, Inc.

• There is NO copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies: as such, proper acknowledgement should be made to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.
Presentation And Panel Discussion
Sunday 3/02/03 8:00PM

Reducing The Cost Of Test & Burn-in -
What Are The Options?

“Cost Considerations In Burn-In Equipment Development”

Anne Sepic - Intel Corporation
Dan Weinstein - Intel Corporation

Moderator: Fred Taber
IBM Microelectronics

Panel Members:
- Ken Heiman
Micro Control Company
- Marc Knox
IBM Microelectronics
- M.S. Maung
Advanced Micro Devices
- Helge Puhlmann
Yamaichi Electronics Deutschland
- Steve Strauss
Intel Corporation
- Bob Zacharis
Pycon
Panel Members

Ken Heiman - Micro Control Company
M.S. Maung - Advanced Micro Devices
Helge Puhlmann - Yamaichi Electronics Deutschland
Bob Zacharis - Pycon
Marc Knox - IBM Microelectronics
Steve Strauss - Intel Corporation
Cost Considerations in Burn-In Equipment Development

2003 Burn-in and Test Socket Workshop
March 2 - 5, 2003

Anne Sepic & Dan Weinstein
Capital Equipment Development
Intel Corporation
Agenda

• Semiconductor Industry Trends
• Burn-in trends:
 – Costs
 – Capability
• Equipment strategies for lowering total BI cost of ownership:
 – Equipment architectures to enable high utilization
 • Process considerations
 – Cost drivers and tradeoffs
 – Design for extendibility
 – Design for reliability/maintainability
Semiconductor Revenues: 31%

High Tech Job Cuts: 740,529

Chip Equipment Revenues: 41%

Tech Sector Return: -37.2%

Source: VLSI Research
Semiconductor Industry Cycles

- 2001 = $139B down 32%
- 2002 = $141B up 1.3%
- 2003 = $171B up 20%

15% CAGR 1958-2007

Chip Sales $B
Chip Sales % Change
CAGR 1958-2006

(Compounded Annual Growth Rate)
• Margins continue to erode as ASP’s decline and competition increases.
• Cost pressures require revolutionary changes
• The supply base must provide a highly capable manufacturing solution at a low cost.
BI Module Cost Distribution

- Equipment capital cost is by far the largest cost driver.
- Tooling cost is substantial and increases proportionally with *cycle time*.
• Expect actual power to be in the middle of these prediction extremes.
• Industry will face ever-increasing challenges in power delivery and dissipation.
Equipment Architecture

• Process cycle time = Cost.
• Employ the Lean Manufacturing objectives and methods to reduce individual device non-stress time through process optimization:
 – Minimize material transfer time.
 – Inter-module: Oven proximity to inline operations.
 – Intra-module: Handler and oven linking.
 – Continuous device feed instead of batch level
 – Reduce burn in boards as ‘expensive’ device carriers.
• **Burn In equipment must be treated as an integral link in the assembly and test processing chain and the processes which it impacts.**
Equipment Cost Drivers and Tradeoffs

- **Power delivery:**
 - The industry uses custom solutions and interconnects at a high cost.
 - Can requirements be adjusted to use lower cost, off the shelf solutions?

- **Thermal capability:**
 - Higher power devices on verge of exceeding passive control capability, but active thermal control technology costs too high.
 - Breakthroughs in ATC technology are needed to achieve higher capability at costs less than passive control.

- **Signal delivery:**
 - Precise signal drivers and complicated burn in boards assist in routing signals to the devices.
 - Does the evolution in firmware designs change how we test our devices?
Design for Reliability and Maintainability

• Reliable equipment costs less.
 – Minimal efforts to manage spares.
 – Dedicated field service support is not required.
 – Equipment engineering activity reduced.

• Reliability must be designed up front.
 – Incorporate input from engineering field work and customer feedback.

• As complexity and component count increases? AT&T Reliability Model produces reduced performance indicators.
 – If components are to fail, ensure maintenance required is simple.
Design for Extendibility

• Exponential rise of power requirements requires radical thinking in planning future equipment extensions.
 – What is requested today runs the risk of being outdated upon introduction.

• Can the infrastructure to support more power delivery or thermal removal be designed into the system?
 – With what cost impact?
Conclusion

• The increased product power roadmaps and reduced cycle time demands drive the need for burn in equipment development to go through a revolutionary change.
• The process architecture and core technology improvements will facilitate a low cost burn in solution.
• The industry is not keeping ahead of the capability or cost pressures!
System Power Analysis

Cost Per Amp

Total System Current (Amps)

ABES-II (1990)
ABES-III (1994)
ABES-M (1996)
HPB-1 (1998)
HPB-2 (1999)
HPB-3 (2001)