COPYRIGHT NOTICE

• The papers in this publication comprise the proceedings of the 2002 BiTS Workshop. They reflect the authors’ opinions and are reproduced as presented, without change. Their inclusion in this publication does not constitute an endorsement by the BiTS Workshop, the sponsors, or the Institute of Electrical and Electronic Engineers, Inc.

• There is **NO** copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies: as such, proper acknowledgement should be made to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.
Technical Program

Session 8
Wednesday 3/06/02 10:30AM

New Products

“Kelvin Contacting Solutions For Leadless Device Types”
Gerhard Gschwendtberger - Multitest Elektronische Systeme GmbH

“Interconnecting At 40 GHz and Beyond”
Roger Weiss, PhD - Paricon Technologies Corporation

“Electro-chemical Cleaning Process”
Erik Orwoll - Nu Signal LLC
Kelvin Contacting Solutions for Leadless Device Types

Gerhard Gschwendtberger
Product Manager Contactors

Multitest elektronische Systeme GmbH & Co.KG
Leadless Packages
Leadless Packages

Leadless Packages = JEDEC compliant QFN plastic package MO-220/MO-229

MLF

MLP

VQFN

VQPFPN

eetc.

Typical Package Sizes:
2x1mm 3/5 lead up to 9x9mm 64 lead
Body thickness ~1mm
Lead Pitch from 1.27mm down to 0.4mm
Kelvin Contactors

Kelvin contactors are typically used for sensitive resistance measurements at Analog/Mixed Signal- and Automotive applications.

Electrical principle: Two independent electrical connections to the device lead allow to compensate parastic resistances between DUT and Tester.

\[
\frac{R_1}{R_2} = \frac{R_6}{R_7} \\
R_X = \frac{R_1 \times R_5}{R_2}
\]
IC Package Trends

Down Sizing
device size, lead pitch/size

DIP, TO SOJ

SOP, SSOP TSSOP

Leadless

Current Kelvin contactor technologies

New technology required
Kelvin Contactors for Leadless Devices

Typical Kelvin Contactor Solution for SOP, SSOP, TSSOP Packages

- contact springs on the top and bottom of the device lead
- contact spring wider than device lead

Typical SOP Kelvin contacting technologies are not suitable for leadless packages
Kelvin Contactors for Leadless Devices

Design Objectives

Mechanical

◆ Leadless packages down to 0.4mm lead pitch
◆ Modular design to enable multi-site testing
◆ Integrated solution at Pick & Place and Gravity test handlers
◆ High durability & lifespan
◆ Field serviceable
◆ Cost effective
Kelvin Contactors for Leadless Devices
Design Objectives

Electrical:
◆ High current capability
◆ Repeatable contact resistance values
◆ Low inductance

Thermal:
◆ Temperature range -55°C through 155°C
◆ Low DUT temperature drift during test
Contactor Design - Package Dimensions

Package Dimensions - Tolerances

<table>
<thead>
<tr>
<th>Lead Pitch e</th>
<th>b (min)</th>
<th>B (max)</th>
<th>L (min)</th>
<th>L (max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.27</td>
<td>0.35</td>
<td>0.47</td>
<td>0.5</td>
<td>0.75</td>
</tr>
<tr>
<td>0.8</td>
<td>0.28</td>
<td>0.4</td>
<td>0.5</td>
<td>0.75</td>
</tr>
<tr>
<td>0.65</td>
<td>0.23</td>
<td>0.35</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>0.5</td>
<td>0.18</td>
<td>0.3</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>0.4</td>
<td>0.16</td>
<td>0.27</td>
<td>0.3</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Tolerances on D & E dimensions typically +/- 0.15mm
Contactor Design - Technology

Pad dimensions lead pitch 0.4mm

Contact area worst case:
0.16 x 0.3 = 0.048mm²

Kelvin contact spring geometry / arrangement
Contactor Design - Features

Kelvin contact spring block

- Molded tungsten needles
- No scrub
- Needles penetrate oxide
- 0.3N @ 0.3mm deflection
- 0.1mm distance between adjacent needles
- Minimum spring pitch 0.4mm
- PC board 10mm distance to DUT
Contactor Design - Features
Contactor Design - Features

Kelvin contact spring block - detail
Contactor Design - Socket Arrangement

Rectangular arrangement for leadless packages
Contactor Design - Dual Contact Unit

- Air connection
- Guide pins (handler docking)
- Temperature insulation
- Kelvin contact
- Spring block
- Guiding holes (plunger reference)
- Base Plate

Guide pins (handler docking)
Contactor Design - Device Positioning

Gravity test handler - vacuum plunger

Guiding door
Guiding bar
Device
Plunger head
Design Evaluation - Contact Springs

Contact spring marks on device pads
Design Evaluation - Contact Springs

Contact spring marks
MLF 4x4 20lead 0.5mm

Contact springs after 500k insertions
Design Evaluation - Resistance Distribution

Contact resistance measurements taken from 100 Devices MLP6x5 8lead Temperature ambient
Design Evaluation - Contact Resistance

Contact resistance versus number of insertions (ambient)

MLP6x5 8lead

Resistance mOhm vs Number of insertions x1000
Evaluation Results - Maximum Current

Maximum test current versus pulse duration

![Graph showing the relationship between pulse duration and maximum current. The x-axis represents pulse duration in milliseconds (ms), ranging from 10 to 1000 ms. The y-axis represents current in Amps (A), ranging from 0 to 10 A. The graph shows a decreasing trend, indicating a decrease in maximum current as pulse duration increases. The base is set at 1 second test time.]
Evaluation Results - Temperature Accuracy

Temperature drift DUT during test at 155°C

DUT temperature after 30 seconds test time = 152.5°C
Evaluation Results - Temperature Accuracy

Temperature drift DUT during test at -55°C

DUT temperature after 30 seconds test time = -53°C
Design Evaluation - Summary

Mechanical:
Package: JEDEC MO220 / MO229
Lifespan: min 1Mio insertions
Contact force: 0.3N
Contact deflection: 0.3mm

Electrical:
Contact resistance: typ. 130mOhm
Maximim current: continuous 1 Amp

Thermal:
Temperature range: -55°C up to 155°C
Temperature accuracy: +/- 3°C
Interconnecting at 40 GHz and Beyond

Roger Weiss, PhD
Electronic Capability Continuously Evolves Smaller, Faster, Better Performance, Lower Cost and More Functionality

- Computer Speed and Size
- Wireless and Telecom
- Military
- Medical

Conventional Connectivity is Running out of Speed
Paricon’s Interconnect Technology Based on Controlled Electromagnetic Alignment of Ferro-Magnetic Particles Within a Polymer Matrix
Core Technology

After Several Years of Research Paricon Has Perfected a Long Promised Capability

- Core Technology Acquired From Bell Labs
- High Performance Materials Developed
- Improved Manufacturing Methods Introduced
- Mechanical Interactions Understood
PariPoser® Interconnect
Contact Resistance

THROUGH RESISTANCE CURVE

Contact Resistance (Milli Ohms)

Normal Probability

Set 1
Rise Time

Time domain response for transmitted signal
Electrical Parameters

Shunt Capacitance (G-S-G) 30 femto Farad
Self Inductance 70 pico Henry
Rise Time (Same as Test System) 32 ps
Delay 1.5 ps
Thermal Cycling

Room Temperature Resistance vs. Time
(~700 Thermal Shock Cycles)
Resistance vs. Temperature

Thermal Coefficient Of Resistance

\[R = R_0 [1 + \alpha_1 (T - T_0) + \alpha_2 (T - T_0)^2] \]

\[\alpha_1 = 6.76 \times 10^{-3} \text{ C}^{-1} \]

\[\alpha_2 = 72.9 \times 10^{-6} \text{ C}^{-1} \]
Material Properties

- **Isolation Gap**: As low as 0.010”
- **Nominal Operating PSI**: 15 - 100 PSI
- **Current Capability**: Up to 1 Amp for 25 mil pad
- **Environmental Seal**: Silicone Gasket
- **Size/Shape**: Any shape < 12” x 30”
- **Pad size**: .025 inches Typical
- **Contact Materials**: Noble Metals

*Data for 1mm LGA Array
Solvent Resistance: Excellent
Thermal Conductivity: 2 W/m °C
Pitch: Engineered
Thickness: 8-15 mils
Op. Temperature Range: - 40 to 160 C
Storage Temperature: -170 to 160 C
Durability: >500,000 cycles at 18 PSI
Formulation Dependent Material Properties

- Burn-in Cycles: >500 to 150 C
- Contact Resistance: <20 milliohms
- Inductance: 70 pH
- Capacitance: 0.03 Pico farads
- Insulation Resistance: > 1 gig ohm
- Frequency Range: At least 40 GHz
- Glitch: >2500 Hours per EIA-540
Technical/Market Advantage

- Performance
- Scalability
- Cost
- Quick Time to Market
- Highly Configurable
- Enables New Approaches
PariPoser® Components
Development Test Socket
10 GHz Test Socket
10 GHz Test Socket
10 GHz Translation Socket
Production Socket
Benefits of the PariPoser® Anisotropic Conductive Interconnection Fabric.

- Conducts Only in the Z-Axis
- Provides Multiple Signal Paths per Pad.
- Exceeds Industry Electronic Needs.
- Extendable to Very High Density.
- Interconnect at 40 GHz and Beyond
- Extends Interconnection capabilities to new dimensions.
Projected Capability

- Die scale interconnection
 - 0.004” pitch demonstrated
- Wafer Scale Test Probe for 300mm
ELECTRO-CHEMICAL CLEANING PROCESS

March 2002 BiTS Workshop

Presented by Erik Orwoll
President
Nu Signal LLC
INTERCONNECT DEGRADATION

Causes:

- Tin Lead Transfer (Metallic Formation)
- Mechanical Wear (Surface finish change)
- Localized areas of plating are removed
- Poor Plating adhesion
- Oxidation
TOPICS TO BE ADDRESSED

- Removal of Tin Lead Transfer & Oxidized Metallics
- Method for Detecting Exposed Base Metal
- Lead Free Solder
- Process can be applied to both Burn-In and Test
CURRENT METHODS FOR TIN/LEAD REMOVAL

» Mechanical Removal - Typically brass or nylon brushes. Consistency is difficult and damage can occur.

» Chemical Cleaners - Can be harmful to contactor plating, base metal, and socket housings. Also volatile & toxic.

» Abrasive - Ceramic or similar material. Can cause damage to plating or base metal.

» Ultra-Sonic Cleaning - Removes dirt and loose particles, but has little or no effect on transferred metals.
TIN LEAD DEPOSITS

Gold Plating
Solder Build-Up

Excessive Solder Build-Up
TIN LEAD DEPOSITS

4 Point Crown Pogo Pin

Solder Build-Up

Solder Build-Up
ELECTRO-CHEMICAL CLEANING PROCESS

- Metal fouling, which is deposited on the contactor, is selectively removed by an electrochemical process which is innocuous to the connector base metal.

- An electrolyte is suspended between the base metal and a collection plate, and a potential is applied.

- Tin Lead deposits are solubilized and deposited on the collection plate.

- The potential is maintained until process is complete.
“REVERSE” PLATING PROCESS

➔ This process is similar to standard electro-plating. However, the potential is reversed, causing the Tin/Lead deposits to be removed from the base metal and released into solution (See Figures 1 & 2)

➔ Tin/Lead deposits form on a “collection” plate
FIGURE 1

Diagram of typical plating process
FIGURE 2 (Socket Inverted)

FLUID LEVEL \downarrow

GROUND PLATE (POS)

Pb+2 Soluble Ions Sn+2 Soluble Ions

ELECTROLYTIC SOLUTION \downarrow

COLLECTION PLATE (NEG)

BIAS VOLTAGE APPLIED TO
DRIVE Pb INTO SOLUTION
ELECTROCHEMICAL TRANSFER

Test Set-up

Collection Plate

Shorted BGA Device
DEPOSITS ON COLLECTION PLATE

Collection Plate

Solder Deposits
MID-PROCESS CONTACT CONDITION

Solder Removed

Remaining Solder
ELECTRICAL DATA

1 CYCLE = 1000 INSERTIONS & 1 HR @ 150 C

CLEANED

CYCLE COUNT

BULK RESISTANCE (Ohms)
BASE METAL DETECTION

➡ A special solution is applied to the socket after it has been cleaned to detect the presence of copper. If plating is not present (typically Nickel/Gold), the exposed area will be highlighted with a stain.

➡ The purpose is to highlight the damaged contacts and to assess replacement.
PERIODIC CLEANING

➔ Cleaning should occur at regular intervals to avoid interconnect failures

➔ The number of cycles and conditions of use determine the interval

➔ Common Values:

Test Contactor - 20,000 cycles
Burn-In Connector - 1000 cycles
LEAD FREE SOLDER

➤ Lead Free Solder can be accommodated with minor modifications to the electrolytic solution

➤ Concentrations of up to 5% Copper or Silver are acceptable
PROS / CONS

Advantage
- Solder is removed without risk of mechanical damage to base metal or gold plating
- Connector life is extended

Disadvantage
- Process requires connectors to be cleaned “off-line”

Patent Pending