COPYRIGHT NOTICE

- The papers in this publication comprise the proceedings of the 2002 BiTS Workshop. They reflect the authors’ opinions and are reproduced as presented, without change. Their inclusion in this publication does not constitute an endorsement by the BiTS Workshop, the sponsors, or the Institute of Electrical and Electronic Engineers, Inc.
- There is NO copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies: as such, proper acknowledgement should be made to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.
Technical Program

Session 3
Tuesday 3/05/02 8:00AM

Thermal Management Methods

“Thermal Modeling Of Burn-in System”
Liu Baomin - Advanced Micro Devices

“Burn-in System And Driver Board Technology Advances”
Mike Niederhofer - - Incal Technology, Inc.
Bruce Simikowski - Incal Technology, Inc.
Liu Baomin
Senior Engineer, Advanced Micro Devices
Email: bao-min.liu@amd.com
Agenda

• Background
• Objective
• Brief Introduction of CFD Thermal Simulation
• Road Map of BI system level simulation
• Model Development & Validation
• Prediction of a new design
• Hotspot and Solution
• Conclusions
• Acknowledgement
Background

BI System Features:

• To Handle Device at high power levels.
• Active thermal control of DUT temperature.
• Forced air flow to move heat out of rack.
• PSU is placed outside main rack.

Thermal Issues to be concerned:

• Large Heat Load: around 1 KW/tray.
• Passive thermal control of critical cables & components.
• New devices
Objectives

With the prediction of the thermal and air flow profiles in the BI system, the present CFD thermal simulation is to

• Verify the thermal performance of new BI system design

• Parametric studies on device power, rack flow, ambient temperature etc.

• Predict hot spots and develop the thermal solution

• Assist to develop new innovative BI systems.
Review of CFD

• Computational Fluid Dynamics, also handle heat transfer

• Solve the governing equation sets of fluid flow & heat transfer

• Input parameters: Geometry, material properties, heat sources and flow sources (fan, pumps, etc), boundary conditions.

• Output: Velocity & temperature field

• Commercial Software for electronic system: Flotherm, Icepak, Paksi, etc.

• Flotherm V3.2 has been used in the present work.
Road Map

Project initiation
Phase 1

Information Collection

Development of Package Compact Model

Tray level model

Tray Level Measurement

Validation of Tray level model

Phase 2

Compact model development of Validated tray model

System Level Measurement

Development of Rack Model

Development of compact model for PSU

Model validation

Phase 3

Modeling of new BI System

Parametric Studies
Detail & Compact Modeling of A CPGA Package

Compact model is accepted!

<table>
<thead>
<tr>
<th>Power dissipation</th>
<th>Theta JB in detailed model °C/W</th>
<th>Theta JB in Compact model °C/W</th>
<th>% difference w.r.t detailed model</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 watts</td>
<td>5.38</td>
<td>5.43</td>
<td>0.9%</td>
</tr>
<tr>
<td>40 Watts</td>
<td>5.6</td>
<td>5.48</td>
<td>2%</td>
</tr>
</tbody>
</table>
Compact Modeling of HBI Tray

• To control mesh number in each tray for system model.
• Represent detail model in air flow & temperature through tray.
• Processor, heat sink and fan assembly are lumped together.

Lumped DUT Bank
Exhaust fan, baffle, 7 compact model of trays, power supply unit (PSU),
Power supply exhaust fan, power sequence, PC, cable extenders
Tray Level Validation

- **Power measurement** of TEC, DUT, Fans, & PCB.
- **Air Temperature measurement** at 10 locations.

Power Supply

<table>
<thead>
<tr>
<th>Position</th>
<th>Simulation Results with inlet air temperature = 25°C</th>
<th>Extrapolated results for inlet air temperature = 20.8°C</th>
<th>Measured air temperature with inlet air temperature = 20.8°C</th>
<th>% deviation w.r.t measured air temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>38.2</td>
<td>34</td>
<td>29</td>
<td>17.2%</td>
</tr>
<tr>
<td>P2</td>
<td>45.2</td>
<td>41</td>
<td>32.4</td>
<td>26.5%</td>
</tr>
<tr>
<td>P3</td>
<td>42.1</td>
<td>37.9</td>
<td>31.7</td>
<td>19.5%</td>
</tr>
<tr>
<td>P4</td>
<td>38.3</td>
<td>34.1</td>
<td>32</td>
<td>6.5%</td>
</tr>
<tr>
<td>P5</td>
<td>42.4</td>
<td>38.2</td>
<td>33.4</td>
<td>14.3%</td>
</tr>
<tr>
<td>P6</td>
<td>37</td>
<td>32.8</td>
<td>32.3</td>
<td>1.5%</td>
</tr>
<tr>
<td>P7</td>
<td>30.9</td>
<td>26.7</td>
<td>27.4</td>
<td>2.5%</td>
</tr>
<tr>
<td>P8</td>
<td>28.9</td>
<td>24.7</td>
<td>28.3</td>
<td>12.7%</td>
</tr>
<tr>
<td>P9</td>
<td>29.1</td>
<td>24.9</td>
<td>27.4</td>
<td>9.1%</td>
</tr>
<tr>
<td>P10</td>
<td>29.6</td>
<td>25.4</td>
<td>27.3</td>
<td>6.9%</td>
</tr>
</tbody>
</table>

At most positions, the deviation is less than 15%.

Tray model is accepted.
Rack Level Validation with CPGA Package

- **Power rates** into rack, 7 PSU, PC, and 7 trays
- **Air temperature** at 20 critical locations.
- **Measured 7 times** under different conditions

<table>
<thead>
<tr>
<th>Locations</th>
<th>Thermal Couples</th>
<th>Measurement, °C</th>
<th>Simulation, °C</th>
<th>Difference, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air guide Left</td>
<td>TC1, TC2</td>
<td>26.9</td>
<td>27.1</td>
<td>0.7</td>
</tr>
<tr>
<td>Air guide Right</td>
<td>TC3, TC4</td>
<td>27.5</td>
<td>27.1</td>
<td>-1.5</td>
</tr>
<tr>
<td>Above sequencer</td>
<td>TC5</td>
<td>25.3</td>
<td>24.2</td>
<td>-4.3</td>
</tr>
<tr>
<td>Below baffle</td>
<td>TC6</td>
<td>27.6</td>
<td>27.8</td>
<td>0.7</td>
</tr>
<tr>
<td>Tray 7 Exit</td>
<td>TC7</td>
<td>26.4</td>
<td>24.8</td>
<td>-6.1</td>
</tr>
<tr>
<td>Tray 4 Exit</td>
<td>TC8</td>
<td>28.6</td>
<td>27.0</td>
<td>-5.6</td>
</tr>
<tr>
<td>Tray 1 Exit</td>
<td>TC9</td>
<td>26.4</td>
<td>27.6</td>
<td>4.5</td>
</tr>
<tr>
<td>Tray 1 inlet</td>
<td>TC10</td>
<td>22.1</td>
<td>-</td>
<td>Ambient Temp</td>
</tr>
<tr>
<td>Tray 3 inlet</td>
<td>TC11</td>
<td>21.8</td>
<td>-</td>
<td>Ambient Temp</td>
</tr>
<tr>
<td>Tray 6 inlet</td>
<td>TC12</td>
<td>22.1</td>
<td>-</td>
<td>Ambient Temp</td>
</tr>
<tr>
<td>Tray 1 Temp</td>
<td>TC13</td>
<td>27.9</td>
<td>26.9</td>
<td>-3.6</td>
</tr>
<tr>
<td>Tray 2 Temp</td>
<td>TC14</td>
<td>28.7</td>
<td>27.9</td>
<td>-2.8</td>
</tr>
<tr>
<td>Tray 3 Temp</td>
<td>TC15</td>
<td>28.4</td>
<td>28.0</td>
<td>-1.4</td>
</tr>
<tr>
<td>Tray 4 Temp</td>
<td>TC16</td>
<td>25.6</td>
<td>28.6</td>
<td>11.7</td>
</tr>
<tr>
<td>Tray 5 Temp</td>
<td>TC17</td>
<td>28.7</td>
<td>29.3</td>
<td>2.1</td>
</tr>
<tr>
<td>Tray 6 Temp</td>
<td>TC18</td>
<td>28.2</td>
<td>28.6</td>
<td>1.4</td>
</tr>
<tr>
<td>Tray 7 Temp</td>
<td>TC19</td>
<td>22.9</td>
<td>23.6</td>
<td>3.1</td>
</tr>
<tr>
<td>Rack side</td>
<td>TC20</td>
<td>22.7</td>
<td>-</td>
<td>Ambient Temp</td>
</tr>
</tbody>
</table>

At all positions, the deviation is less than 12%.
Rack Level Validation by Electric Heaters

Condition
- Ambient Temperature – 30 Deg C
- Exhaust Fan Speed - 1300cfm
- Thermal Load per tray – 1200 watts
- Number of Trays per rack – 7

Result

<table>
<thead>
<tr>
<th>Tray Numbering</th>
<th>Measurement</th>
<th>Simulation</th>
<th>Diff %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tray 1</td>
<td>54.3</td>
<td>51.1</td>
<td>6.24%</td>
</tr>
<tr>
<td>Tray 2</td>
<td>48.5</td>
<td>47.1</td>
<td>3.04%</td>
</tr>
<tr>
<td>Tray 3</td>
<td>45.5</td>
<td>48.1</td>
<td>-5.34%</td>
</tr>
<tr>
<td>Tray 4</td>
<td>48.0</td>
<td>49.3</td>
<td>-2.57%</td>
</tr>
<tr>
<td>Tray 5</td>
<td>43.9</td>
<td>49.6</td>
<td>-11.40%</td>
</tr>
<tr>
<td>Tray 6</td>
<td>47.3</td>
<td>51.6</td>
<td>-8.25%</td>
</tr>
<tr>
<td>Tray 7</td>
<td>46.6</td>
<td>50.5</td>
<td>-7.70%</td>
</tr>
</tbody>
</table>

Simulation agrees with measurement at difference less than 12%.

Rack level model is accepted!
Application to New BI Design: DUT Unit

Device Fan

High performance heat sink

Copper thermal plate

uP package
Modeling of New BI Tray

- PCBs: V board, F-Board, S-board & T board.
- Components: Voltage Regulator Modules (VRMs), Convert block
- 3 Tray Fans, Cable & its connector
Modeling of New BI Rack
Typical Flow & Thermal Distributions

Design conditions:

- $uP = 45W$; $TEC=30W$
- $VRM = 15.6W$
- Totally, $1.25KW/tray$, $11.65W/rack$.
- Ambient: $25°C$
- Rack Fan: 1392 CFM

Predictions:

<table>
<thead>
<tr>
<th>Tray Temperature, 'C:</th>
<th>Tray 1</th>
<th>Tray 2</th>
<th>Tray 3</th>
<th>Tray 4</th>
<th>Tray 5</th>
<th>Tray 6</th>
<th>Tray 7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48.0</td>
<td>43.6</td>
<td>43.9</td>
<td>44.3</td>
<td>44.5</td>
<td>44.6</td>
<td>44.7</td>
</tr>
</tbody>
</table>
Animation of Air Flow in BI Rack
Hot Spots in the Present Design

VRMs are at about 500°C, Hot spots in the rack!
Thermal Solution to Hot Spots by Heat Bridge

<table>
<thead>
<tr>
<th>Tray</th>
<th>VRM1</th>
<th>VRM2</th>
<th>VRM3</th>
<th>VRM4</th>
<th>VRM5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp, 'C</td>
<td>94</td>
<td>101</td>
<td>103</td>
<td>103</td>
<td>96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tray Temperature, 'C:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tray 7</td>
</tr>
<tr>
<td>43.7</td>
</tr>
</tbody>
</table>

Achievement: VRM Temp < 150°C, Tray Temp reduced by about 1°C.
Conclusions

- Thermal simulation methodology for BI system have been developed with validations.
- New BI system design have been modeled and hot spots were detected on VRMs.
- Methods has been developed to solve the thermal issues.
- CFD modeling can be used to evaluate, improve the system design, and prevent the thermal issues before manufacturing and production and thus time-saving and cost-saving.
Benefits of Thermal Simulation

- Procedures to develop and validate the CFD models for complicated systems.
- Compact model development methodology for component and sub-system.
- Validation experiment at subsystem and full system level
- Experience and knowledge can be used to simulate other testing equipment and systems.
Acknowledgement

The following persons are acknowledged for their respective contributions and support to the project:

• Bay Gim Leng, Rathin Mandal, Mui Yew Cheong, Rafiq Hussain, Maung, MS, James Hayward, Raj Master, AW CK and CS Chan from AMD.

• D.Pinjala, O.K.Navas from Institute of Microelectronics (Singapore)

Support of AMD management is also appreciated.
BiTS 2002
Burn-in System
and
Driver Board
Technology Advances

2002 Burn-in and Test Socket Workshop
March 3 - 6, 2002

Mike Niederhofer, & Bruce Simikowski
INCAL Technology, Inc.
Burn-in System
Minimum Requirements

- Temperature control
- Power supply control and sequencing
- Dynamic drive signal capabilities
- Downloadable pattern file structures
Past Burn-in system technology

- Static Burn-in
- Dynamic drivers with binary counter or EE Ori prom based drivers
- No output monitoring - manual operator measurement
- Manual power supply sequencing or thumb-wheel switches
- Temperature monitor via chart recorder
Early Burn-in systems

• The OLD way
Today’s customers demand

- Flexible system tooling for different board types
- Windows based op system - Windows NT
- Network access - Desktop Emulation
- Output monitoring
- Lower voltage levels - 0.5 volts for <.13 micron tech.
- Higher frequencies - to 33 MHz
- BIST test functions
- DUT Status, failure data analysis
- Pattern editors
- Tester vector converters
Modern Burn-in Systems

- Computerized
- Low Voltages
- DUT Monitoring
Windows Op sys

- Vertical
- or
- Horizontal
Slot Information

- DUT Mapping
- Waveform retrieval example
- Advanced fail information
Pattern Editor Program
Tester Vector conversions

- A Difficult Challenge
Previous Driver capabilities

• 16 address lines / eight clocks
• Clock outputs in ranges of 5 to 10 volts
• Maximum frequency of 2 to 10 MHz
• No on-board memory. Pattern Generators configured on a zone basis.
• 96 channels maximum
• Discrete Output channels
Latest driver board technology requirements

- Computer controlled
- Tester file Compatibility
- Configurable Drive and Monitor channels
- Speeds of > 25 MHz
- Memory pattern depth 2 to 16 Meg
- Monitor of DUT outputs
- 128 to 256 channels
- Compatible to many signal types: TTL, LVTTTL, LVDS, PECL, GTL, GTL+, CML
Modern Drivers
Dedicated driver boards

- Application specific or
- Industry specific
- Surface mount technology
- High production volumes
- Lower unit cost
Dedicated driver boards

- Application specific Drivers
 - HTRB/HTGS
 - HYBRID
 - Electro Migration
 - Soft-Error
High Power System & Driver requirements

- Designed specifically for Hi-Voltage FET, IGBT, SSR testing
- High voltage capabilities
- Individual DUT power Control/Monitoring
- Automotive market
- Industrial Controls Market
Specialty B/I system specifications

- Computer controlled
- Individual DUT monitoring
New emerging test methodologies

- Soft Error testing
- Test memory locations with neutron or proton sources present
Today’s Industry markets and requirements

<table>
<thead>
<tr>
<th>MARKET</th>
<th>REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial IC market</td>
<td>Low cost / delivery</td>
</tr>
<tr>
<td>Automotive market</td>
<td>High power</td>
</tr>
<tr>
<td>Memory market</td>
<td>Speed / error detect</td>
</tr>
<tr>
<td>Medical / Military</td>
<td>Custom hardware</td>
</tr>
<tr>
<td>Test Lab market</td>
<td>Cost / flexibility</td>
</tr>
</tbody>
</table>
Today’s industry demands

- High speed dynamic drive
- High power dissipation
- Deeper pattern requirements
Specialty and Hybrid market specifications

- Implantable Devices
- High Quality levels required
- Custom Hybrids and sockets
- High Voltage Power and Signals
- Monitor capabilities required
Test Lab market

- Low cost, universal hardware
- Adapter trays to utilize existing BIBS
- Flexibility
- Ease of Pattern Generation & Conversion
System vendor’s plight

- A typical System engineering dilemma

<table>
<thead>
<tr>
<th>Sales price</th>
<th>R & D costs</th>
</tr>
</thead>
</table>

Ratio
Customer’s requirements

- A perfect solution for the customer
Burn-in system vendor

• One stop shopping

Production chambers
Prescreen stations
lab ovens

Custom software
Pattern conversions

BIBS
Drivers

Customer

Service
and support
Conclusion

• Vendors and customers work towards common goal of improving technology while lowering costs
• Standardization of hardware
• Sharing of R & D costs
• Discuss technology advancements and technical requirements up-front
• Service multiple markets with present technology
• Industry consolidation inevitable
Conclusion

• Today we see Production systems that offer the flexibility to test and burn-in different product types and technologies for many different markets

• The cost of these Burn-in systems can approach those of high-end VLSI testers
Conclusion

• A working relationship between the system vendor and the customer at all stages of the purchase and utilization cycle will reduce R & D costs, thus lowering system costs.

• NRE charges, design costs, custom hardware, and custom software ... WILL ALWAYS EXIST
Conclusion

• Minimizing these costs, while providing the customer cost effective technical solutions

Is the CHALLENGE system vendors face today