Burn-in & Test Socket Workshop

March 4 - 7, 2001
Hilton Mesa Pavilion Hotel
Mesa, Arizona

Sponsored By The IEEE Computer Society
Test Technology Technical Council
COPYRIGHT NOTICE

• The papers in this publication comprise the proceedings of the 2001 BiTS Workshop. They reflect the authors’ opinions and are reproduced as presented, without change. Their inclusion in this publication does not constitute an endorsement by the BiTS Workshop, the sponsors, or the Institute of Electrical and Electronic Engineers, Inc.

• There is NO copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies: as such, proper acknowledgement should be made to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author/s or their companies.
Burn-in & Test Socket Workshop

Technical Program

Keynote Speaker
Monday 3/05/01 8:00PM

“Wafer Level Paradigm For Burn-in And Test”

Dr. Thomas Di Stefano
President & CEO
Decision Track, LLC
Wafer-Level Paradigm for Burn-in and Test

Dr. Thomas Di Stefano
Decision Track
March 5, 2001
Chip Scale / Wafer Level Packaging Begins a New Paradigm

- **Surface Mount**
 - QFP
 - TSOP
 - SOJ
 - BGA

- **Chip Scale**
 - CSP
 - Wafer Level
 - Stacked Die
 - SiP

- **Thru Hole**
 - DIP
 - Pin Grid

YEAR

- **1960**
- **1980**
- **2000**

VOLUME

Density
IC Packaging Progression:

- **Through Hole**
 - DIP
 - 100 mil pitch
 - Limited by through hole spacing

- **Surface Mount**
 - TSOP
 - 25 mil pitch
 - Limited by perimeter leads

- **CSP / WLP**
 - CSP
 - Area array 0.8 mm to 0.5 mm
 - Limited by substrate wiring
Packaging Driver: Miniaturization

- Personal Electronics -
 - Cell Phones
 - PDAs
 - Camcorders
 - Mobile Computers
 - Card PCs
 - Memory Cards
 - Personal Communicators
Wafer Level Packaging and Interconnect... Enabled by the Chip Size Package

• The Wafer Level Paradigm is driven by imperatives ...
 – Packaging Cost
 – Simplified Logistics
 – IC Functionality
 – Performance

• Production is Emerging Rapidly
 – Beginning in Small Devices (< 3mm)
 – Adapts Wafer Processing Infrastructure
 – Extending to Larger Die Sizes
Dallas Semiconductor Wafer Level Package
National Semiconductor MicroSMD
Wafer Level Packaging is Paced by Infrastructure

- Package Reliability
- High Density PWB Substrates
- Burn-in and Test
 - Wafer level burn-in
 - Functional test on the wafer
- Standards
 - Proliferation of variations slows adoption
Flip-Chip Wafer Level Package

• Eutectic Solder Ball Flip-Chip
 – Small DNP allows adequate reliability
 – Adapts existing infrastructure for rapid growth
 ... But --- limited to small die sizes

• Flexible Interconnect Extends to Larger Die Sizes
 – Metal columns
 – Solder columns
 – Stacked solder balls
 – Flexible solder balls
 ... All with minimum changes to existing wafer processing infrastructure

• Wafer Level Package Provides:
 – Surface mountable package
 – Testability
 – Reliability
 – Standards
Fujitsu SuperCSP

- Solder balls on copper posts
- Redistribution wiring to posts
- Encapsulant is molded onto wafer
- Inflexible posts limit reliability
APACK Solder Column Package

Improves Strain Relief on Solder Ball
<table>
<thead>
<tr>
<th>Pins (#)</th>
<th>Die Area (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>10000</td>
<td>10000</td>
</tr>
</tbody>
</table>

- **Flip-Chip**
- **Underfill+**
- **µProcessor**
- **0.25 mm grid**
- **0.5 mm grid**
- **HDI PW**
- **ASICS**
- **DRAM**
- **SRAM**
- **Passives**
- **Analog ICs**
- **Power ICs**
- **Discretes**

Flexible Contacts Will Extend Wafer Level (2002-2005)
JIEP Projections for CTE

CTE (ppm/C):
- Board
- Package

Graph showing trends for Board and Package CTE from 1998 to 2010.
Low CTE Substrates Further Extend Wafer Level (2005)
CSPWLP Paced by High Density Substrate

- CSP
- Stacked Die
- WLP
- SiP
- μPROCESSOR
- WIRELESS
- ASICS
- INFORMATION APPLIANCES
- FLASH, SRAM
- DSP
- DRAM

Requires HDI

1995 2000 2005 2010

Decision Track BiTS 2001
World Micro-via Hole PCB Production ($million)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>320</td>
<td>600</td>
<td>1,055</td>
<td>1,800</td>
<td>2,700</td>
<td>4,000</td>
</tr>
<tr>
<td>Europe</td>
<td>10</td>
<td>15</td>
<td>40</td>
<td>260</td>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>N. America</td>
<td>25</td>
<td>35</td>
<td>40</td>
<td>150</td>
<td>300</td>
<td>500</td>
</tr>
<tr>
<td>Asia Pacific</td>
<td>2</td>
<td>10</td>
<td>85</td>
<td>210</td>
<td>400</td>
<td>600</td>
</tr>
<tr>
<td>Total</td>
<td>357</td>
<td>660</td>
<td>1,220</td>
<td>2,420</td>
<td>3,800</td>
<td>5,700</td>
</tr>
</tbody>
</table>

Total Number of Lasers

| | 115 | 240 | 450 | 900 | 1,500 | 2,500 |

forecast - Japan’s $4 Billion 2001 forecast consists of $2.5 Billion IC package (BGA/LGA) substrates and $1.5 Billion in HDI circuit boards.

Data Source: N.T. Information Ltd. (Dr. Hayao Nakahara)
I/O Explosion: Power & Ground Distribution

- **Distribute the Power and Ground on Chip**
 - Better electrical characteristics
 - Shorter distance to the shielding planes
 - Dramatically reduces I/O connections for power/ground
 - 80+% of I/O on advanced processors is Power/Ground.

- **Power and Ground Layers on the Wafer**
 - Efficiency of production
 - Avoid paying for large number of power/ground pins.
 - Makes the chip easier to test - fewer power/ground contacts
The graph shows the growth of interconnect-related parameters over time. The time line is divided into three decades: 1980, 1990, and 2000.

- **I/O (Input/Output)**: This parameter has shown a steady increase, with a significant rise towards 2000.
- **Power/Ground**: The power and ground lines are also on an upward trend, particularly noticeable by the year 2000.
- **Total Pin Count**: This parameter experiences a dramatic increase, especially from 1990 onwards, reaching a high by 2000.

The graph illustrates the explosive growth in interconnect requirements, which has significant implications for the design and development of modern electronic systems.
IC Performance: RC Delays are an Increasing Problem

RC Delays scale as the inverse square of the scaling law
- Max propagation length is 3 mm at 0.25 μm lithography
- Propagation length shrinks as geometries are scaled
Power & Ground: Redistribution on the Chip

Power/Ground Distribution
- Fabricated on separate layers
- Assembled to the wafer

Flip Chip
- Pin count Explosion
- 70-80% is Power & Ground

Composite Chip
- Power/ground distributed on the chip to reduce I/O count
- High performance Power and ground distribution
Wafer Level Packaging: Added Interconnect Capability

- Wafer level production for processors allows
 - Power/ground distribution on chip
 - Routing critical nets in low resistance copper lines in the package

- Approaches
 - Multi-layer flex interposer
 - Silicon interposer

- Pacing items
 - High density wiring capability on chip for (4-6 layers of wiring)
 - High density PWB substrates (0.5 mm via pitch or better)
 - Capability to burn-in and test chips in a wafer format
Multi-Chip Packages: MCMs?

Multi-Chip Packages Offer MCM Advantages

- Avoid Large Die Sizes of System-on-a-Chip
- Faster Time-to-Market
- Mixed Technologies (GaAs, Flash, Passives, …)
- Smaller Size
- Higher Performance

So What’s New?

- Wafer Test and Burn-in of Wafer Level Packages
- High Volume Applications
- Cost Effective Micro-via Substrates
SyChip Integrated Phone-in-a-Package Solution
Wafer Test & Burn-in: Driving Factors

- **Necessary for Wafer Level Packaging**
 - Must burn-in Before Final Test on the Wafer.
 - Applies to flip chip as well as full wafer level packaging

- **Faster Time to Market**
 - Diced Wafer is the final, fully tested product.

- **Faster Cycles of Learning**
 - The wafer fab has full information on test before wafer leaves fab

- **Reduction of Test Costs**
 - “Test Once”
 - Wafer test is both probe and final test
Conventional Packaging

- Wafer Probe
- Wafer Dicing
- Package
- Test
- Burn-in
- Final Test

Wafer Level Packaging

- Wafer Packaging
- Wafer Burn-in
- Final Test
- Wafer Dicing

- Product Cost Reduction
- Cycle Time Reduction
- Capital Cost Reduction
Wafer Test: Challenges Ahead

- **Probe Density**
 - 60 μm pad spacing
 - Area array pads

- **Functional Wafer Test**
 - Test at Speed

- **Parallel Testing**
 - BIST ?
 - Wafer run-in (test during burn-in)

- **Hot chuck testing**
 - Wafer test at temperatures to 150 °C
Wafer Burn-in: Technical Challenges

- **Contact Alignment**
- **Electrical Interconnect**
 - Wire 10,000 - 20,000 contacts to device drivers
- **Large Number of Electrical Contacts**
 - Force of 250 lb for 20,000 contacts
 - 500,000 contacts for a flip chip micro-Processor
- **Extreme Environment**
Wafer **Burn-in**: Technical Challenges

- 10,000 - 500,000 contacts

- From 25°C to 150°C
 - Cu → 450 µm (18 mils)
 - Si → 75 µm (3 mils)
The Drive Toward Wafer Level Packaging

• Growth of Chip Scale Electronics is Rapid

• Chip Scale is Moving toward Wafer Level Packaging

• Wafer Level Packaging will Extend for Decades into the Future

• Advances are Needed in Burn-in and Test
 - Strip Test
 - Wafer Test at Speed
 - Wafer Level Burn-In